Двоичная система счисления

Материал из Гуру — мира словарей и энциклопедий
Перейти к: навигация, поиск

Двоичная система счисления (Бинарная система счисления, binary) -- позиционная система счисления с основанием 2. Для представления чисел используются символы 0 и 1.

Пример (пояснения см. в статье система счисления):

100100112=1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 14710

Соответствие первых двух десятков двоичной и десятичной систем счисления.
Десятичная 0 1 2 3 4 5 6 7 8 9
Двоичная 0 1 10 11 100 101 110 111 1000 1001
Десятичная 10 11 12 13 14 15 16 17 18 19
Двоичная 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011

Практическое применение двоичной системы затрудняется, во-первых, привычкой нашей к десятичной системе, приобретаемой с детства и, вероятно, отчасти унаследованной, и тем обстоятельством, что в двоичной системе для означения даже небольших чисел требуется гораздо большее число цифр, чем в десятичной. Так, например, 100 в десятичной системе будет изображаться 1100100 в двоичной, 1000 десятичной системы есть 1111101000 в двоичной и т. д.


Чтобы написать какое-нибудь число в двоичной системе, должно делить его последовательно на 2 и писать подряд, справа налево, остатки от деления. Например, чтобы написать 400 в двоичной системе, делим это число на 2, первое частное 200, остаток 0, второе частное 100, остаток 0, третье частное 5 0, остаток 0, четвертое частное 25, остаток 1, пятое частное 12, остаток 0, шестое частное 6, остаток 0, седьмое частное 3, остаток 0, восьмое частное 1, остаток 1, девятое и последнее частное 0, остаток 1, и так 400 десятичной системы пишется 110010000 в бинарной.

Переход от числа, написанного в двоичной системе, к десятичной, совершается простым сложением степеней числа 2, означенных в числе. Так, напр., число 110010000 в двоичной системе есть сумма 8-й, 7-й и 4-й степени двух, т. е. 256, 128 и 16, т. е. 400, ибо, как сказано выше, единицы на различных местах в написанном числе означают разные степени 2-х, которые вместе составляют данное число.

История[править]

Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:

Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ, в частности Сетунь.