Колебательные движения

Материал из Гуру — мира словарей и энциклопедий
Перейти к: навигация, поиск

Колебательные движения - Самый простой случай К. движений уже рассмотрен в статье Гармоническое движение. Такое движение обуславливается переменной силой, во всякий момент направленной противоположно отклонению колеблющейся точки u, пропорциональной величине отклонений. Перемещение колеблющейся точки, в самом простом случае, выражается уравнением: x = α sin2 π t / T, где α размах или амплитуда колебания, T - период одного колебания, t время, считаемое от момента прохождения точки чрез среднее свое положение и угол 2π t / T - фаза колебания. Фаза определяет место точки в пути и считается от 0 до 2π. Кинетическая энергия колеблющейся частицы (масса m), выражаемая, обыкновенно, через ½ mv2 (живая сила), меняется в течение ½ периода от нуля до некоторого максимума. Поэтому средняя величина энергии для времени ½ периода выражается через

π2m a2 / T2.

Все возможные типы колебаний могут быть приведены к простому колебанию - гармоническому. Фурье доказал особой теоремой, что всякое периодическое или К. движение с периодом T можно составить через сложение простых - с периодом T, ½T, T, и т.д. и притом составить только одним способом (т. е. с вполне определенными амплитудами и фазами). Иначе говоря, всякое К. движение с периодом Т разлагается на простые гармонические, причем период основного есть Т. Два простых колебания одного периода, следующие по одной и той же прямой, складываются - усиливая или ослабляя друг друга и даже уничтожая (если амплитуды равны, а фазы противоположны, т. е. разнятся на π). Такое явление называется интерференцией колебаний (см. Интерференция). Два колебания одинакового периода, направленные по взаимно перпендикулярным прямым, смотря по амплитудам и разности фаз, складываются или в движение по эллипсу (эллиптическое колебание), или по кругу (круговое колебание), или по прямой. Два колебания различных периодов по взаимно перпендикулярным линиям, в зависимости от амплитуд и разности фаз, складываются в траектории сложных форм, известных под общим именем фигур Лиссажу. Ряд точек, последовательно приходящих в К. движение, называется лучом. Передача колебаний от точки к точке - совершается с определенной скоростью, которая поэтому называется скоростью распространения колебаний. Расстояние между двумя ближайшими точками луча, находящимися в одинаковых фазах колебания, называется длиной волны (λ). Если в ряде точек в некоторый момент (t) перемещение одной точки ряда: x = а sin2 π t / T, то перемещение всякой другой, находящейся в ряде на расстоянии y от первой, выразится уравнением

x = a sin2 π (t / T-у / λ).

Такое уравнение называется уравнением луча и y называется разностью хода двух колеблющихся точек. Она соответствует разности фаз 2π y / λ (см. Волны, Дифракция, Интерференция). Подробнее о К. движении см. Thomson u. Tait, "Theoretische Physik ü bersetzt v. Helmholtz und Wertheim" (p. 57); Хвольсон, "Учение о движении и силах (1893, стр. 58); Столетов, "Введение в акустику и оптику" (M., 1895). См. еще Колебания звучащих тел.

Н. Егоров.

Статья из Большого Энциклопедического словаря Брокгауза и Ефрона

Данная статья была взята с Большого Энциклопедического словаря Брокгауза и Ефрона. Это вовсе не означает что статью нельзя редактировать или обновлять, или исправлять неточность.

Если вы заметили неточность в статье, или хотите внести больше ясности, вы можете ее "редактировать" и "править" по Вашему усмотрению